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Figure 1 – A) Geologic Map of the Kaipo Slips 
B) Geologic cross-section of bedrock units exposed in the Kaipo Slips.

 The South Island of New Zealand is divided along its length by the Australian-Paci�c Plate bound-
ary [Mortimer, 2017]. Through the South Island, the active plate boundary is represented by the 
540km long right-lateral Alpine Fault, a structure analogous to the San Andreas Fault System, which 
has accommodated the majority of accumulated tectonic deformation since the Miocene (ca. 23 Ma), 
and records high quaternary slip rates presently thought to be distributed variably along strike [Nor-
ris & Cooper, 2001; Sutherland et al., 2006; Mortimer, 2014]. 
 The Alpine Fault represents the single largest onshore seismic hazard in New Zealand, capable of 
producing a ≥Mw 8.0 earthquake resulting in signi�cant property damage and even loss of life 
throughout much of the South Island [Sutherland, 2007]. Parameters including slip rate and fault 
zone material properties directly relate to capability and probability of rupture along the fault, and 
inform probabilistic earthquake forecasts used to inform public decision [Anderson et al., 1996; Field 
et al., 2013]. However, much of the Alpine Fault cuts through rugged topography and is covered by 
dense rainforest which poses di�culties for both access and �eld work. 
 Here, I use a combination of in-person digital geologic �eld mapping and proprietary 1m resolu-
tion airborne light detection and ranging (LiDAR) data to produce a new large-scale map of the 
Kaipo Mélange of Barth (2013) and I revise previous topographically derived slip-rate estimations 
through mathematical interpolation and measurement of o�set glaci al landforms.

 In-person digital �eld mapping was conducted along the western Kaipo Valley �ank, where 
several young multi-generational rotational landslides (e.g. the Kaipo Slips) expose bedrock 
units. Within older inactive landslide lobes, stream channels regularly feature steeply incised 
banks provided discontinuous bedrock exposure.
 Correlation of units and structures was informed by a 1m grid-resolution Digital Terrain Model 
(DTM) and multi-hillshade raster derivatives of airborne LiDAR data. Airborne LiDAR has the ca-
pability of penetrating rainforest canopy to register ground returns, thus, geomorphic features 
that are di�cult to visualize in the �eld or are  unobservable in stereo-paired aerial photographs 
are comparatively simple to locate, interpret and measure using GIS software [Cowgill et al., 
2012]. 
 Alpine Fault strike-slip rates were investigated by identifying and projecting o�set geomorphic 
markers into the fault plane [Zielke et al., 2014]. This method is a modernization and re-appraisal 
of slip rates presented by Sutherland (2006), which exploited ice-carved valley walls that formed 
continuous surfaces during the LGM, and were subsequently o�set by Alpine Fault movement in 
the Holocene. Because glacially carved valleys display diagnostic U-shaped cross sections, a  
global second order polynomial was chosen for inexact interpolation of remnant elevation points 
not modi�ed by �uvial and mass wasting processes. 

  

 High-resolution topographic data allow for increased accuracy of geologic mapping, and can prove indispensable in heavily veg-
etated and rugged areas. In this study, LiDAR informed �eld work, allowed for identi�cation of otherwise obscured geologic struc-
tures, aided remote completion of digital mapping, and constrained the sense of displacement across active faults.  
 When measuring o�set geomorphic markers for slip rate determination, LiDAR data allowed for (1) validation of the n ature of 
each o�set geomorphic marker, (2) linear trend interpolation of geomorphic surfaces, (3) accurate determination of the location 
and bearing of the fault trace. 
 Our calculated slip rate for the southern Alpine Fault is ~14% greater than those constructed from linear extrapolation of con-
tours derived from stero-paired photographs [Sutherland et al., 2006]. Notably, the southern Alpine Fault slip rate calculated via 
o�set topography in this study overlaps within the error bounds of the geologically determined slip rate of Barth (2014) which was 
investigated within a few kilometers of this study area. These results appear to imply that the long-regarded notion that the Alpine 
Fault strike-slip rate diminishes to the south may not be correct, and that direct age-control on o�set geomorphic markers is pru-
dent. Both the widespread extent of easily deformed basement units and ~14% greater slip rate illuminated herein should likely 
be accounted for in probabilistic forecasts of seismic hazard.  
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Figure 2 - A) Oblique view of multi-hillshade draped over DTM. Note preserved glacial landforms. B & C) Plane-view of Kaipo West and Kaipo E, respectivley. Thin black 
lines are equal elevation contours generated from linear trend interpolated glacial surfaces. Note the example measurement of equal elevation contour pairs.

Table 1) O�set measurements of glacial valley wall o�sets. Note that John O’Groats and 
Hollyford Valleys did not have suitable o�sets preserved along the both valley walls.

A combined approach utilizing airborne LiDAR data, in-person digital geologic �eld mapping, and GIS-based remote analysis allows for a new large-scale geologic map of the 
Kaipo Mélange and revised quaternary strike-slip rates for the southern Alpine Fault, New Zealand. We document a 1.5 x 3.5 km wide fault-parallel region of distributed quaterna-

ry active faulting and tectonic mixing of basement units related to progressive Australian-Paci�c Plate boundary strain accumulation. We revise previously estimated southern 
Alpine Fault slip rates based on o�set measurements of displaced glacial valley walls through identi�cation and linear trend interpolation of well-preserved surfaces into the 

Alpine Fault trace. Our mean corrected o�set measurement of 499.9 (+/- 28.9) m yields a Quaternary strike-slip rate of 27.7 (+2.8 / -2.6) mm/yr between the Hollyford Valley and 
John O’Groats River based on correlation to the timing of glacial retreat during the Last Glacial Maximum at 44°S in New Zealand. Our strike-slip rate is ~14% greater than previ-

ously published using the same o�set glacial landforms.

GIS-Based Geologic Mapping and Analysis of the Kaipo Mélange and southern 
Alpine Fault, New Zealand
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